692 research outputs found

    Deuterium retention and erosion in liquid Sn samples exposed to D2 and Ar plasmas in GyM device

    Get PDF
    The use of tin (Sn) as a liquid metal for plasma facing components has been recently proposed as a solution to the high heat load issue on the divertor target plates in nuclear fusion reactors. Due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact, tin is a good candidate as plasma facing component. However its high atomic number poses concerns about plasma contamination.In this paper two fundamental aspects have been investigated: deuterium retention and erosion fluxes from the Sn surface towards the plasma. The samples were exposed to plasma inside the linear machine GyM in magnetic cusp configuration. This setup permits to expose free liquid specimens without the need for the Capillary Porous System. Moreover it permits to lower the magnetic field in order to increase Sn Larmor radius and consequently limit Sn re-deposition in erosion experiments.Ex-situ analyses by ion beam diagnostics on solid samples exposed to deuterium plasma have proved that the amount of retained atomic deuterium is very low, approximately 0.18 at% estimated by Nuclear Reaction Analysis and 0.25 at% estimated by Elastic Recoil Detection Analysis.In the framework of erosion studies, the spectroscopic parameter S/XB was evaluated in Ar plasma for the SnI line at 380.1 nm by Optical Emission Spectroscopy and mass loss measurements in the 5–11 eV Te range, at a density ne ∼ 1.5 × 1011 cm−3. An average value of 150 ± 23 was obtained. Keywords: Liquid metals, Deuterium retention, Erosion, Double-cusp magnetic configuration, Ion beam diagnostics, S/XB spectroscopic paramete

    Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C

    Get PDF
    Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype

    Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann–Steiner and Rubinstein–Taybi syndromes

    Get PDF
    Lysine-specific methyltransferase 2A (KMT2A) is responsible for methylation of histone H3 (K4H3me) and contributes to chromatin remodeling, acting as \u201cwriter\u201d of the epigenetic machinery. Mutations in KMT2A were first reported in Wiedemann\u2013Steiner syndrome (WDSTS). More recently, KMT2A variants have been described in probands with a specific clinical diagnosis comprised in the so-called chromatinopathies. Such conditions, including WDSTS, are a group of overlapping disorders caused by mutations in genes coding for the epigenetic machinery. Among them, Rubinstein\u2013Taybi syndrome (RSTS) is mainly caused by heterozygous pathogenic variants in CREBBP or EP300. In this work, we used next generation sequencing (either by custom-made panel or by whole exome) to identify alternative causative genes in individuals with a RSTS-like phenotype negative to CREBBP and EP300 mutational screening. In six patients we identified different novel unreported variants in KMT2A gene. The identified variants are de novo in at least four out of six tested individuals and all of them display some typical RSTS phenotypic features but also WDSTS specific signs. This study reinforces the concept that germline variants affecting the epigenetic machinery lead to a shared molecular effect (alteration of the chromatin state) determining superimposable clinical conditions

    Formation of dust in low-pressure magnetized hydrocarbon plasmas

    Get PDF
    The rapid formation of large molecules and the subsequent production of solid-state dust particles in a low-pressure discharge is unlikely, because of the low rates of the polymerization reactions and short lifetimes of the species. Here, we suggest that C dust particles can form in atypically low (10− 3 mbar)-pressure hydrocarbon plasmas if the dust charging time is much shorter than the gas residence time in the device; we present supporting experimental evidence for this. Such a condition can be obtained by the production of high-density plasmas. The results show that dust formation from the gaseous phase can occur in a much wider parameter range than is commonly assumed

    DNA Methylation in the Diagnosis of Monogenic Diseases.

    Get PDF
    DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results

    Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2A-Related Syndrome

    Get PDF
    Wiedemann\u2013Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episignature for KMT2A-related syndrome could allow functional classification of variants and provide insights into the pathophysiology of WDSTS. Therefore, we assessed genome-wide DNA methylation profiles in a cohort of 60 patients with clinical diagnosis for WDSTS or Kabuki and identified a unique highly sensitive and specific DNA methylation episignature as a molecular biomarker of WDSTS. WDSTS episignature enabled classification of variants of uncertain significance in the KMT2A gene as well as confirmation of diagnosis in patients with clinical presentation of WDSTS without known genetic variants. The changes in the methylation profile resulting from KMT2A mutations involve global reduction in methylation in various genes, including homeobox gene promoters. These findings provide novel insights into the molecular etiology of WDSTS and explain the broad phenotypic spectrum of the disease

    Proposed antimatter gravity measurement with an antihydrogen beam

    Get PDF
    The principle of the equivalence of gravitational and inertial mass is one of the cornerstones of general relativity. Considerable efforts have been made and are still being made to verify its validity. A quantum-mechanical formulation of gravity allows for non-Newtonian contributions to the force which might lead to a difference in the gravitational force on matter and antimatter. While it is widely expected that the gravitational interaction of matter and of antimatter should be identical, this assertion has never been tested experimentally. With the production of large amounts of cold antihydrogen at the CERN Antiproton Decelerator, such a test with neutral antimatter atoms has now become feasible. For this purpose, we have proposed to set up the AEGIS experiment at CERN/AD, whose primary goal will be the direct measurement of the Earth's gravitational acceleration on antihydrogen with a classical Moiré deflectometer. © 2007 Elsevier B.V. All rights reserved

    Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood

    Get PDF
    Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families
    • …
    corecore